Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-27

Development of mass spectrometric techniques for 3D imaging and in-vivo analysis of biological tissues

Objectif

Recent development of atmospheric pressure desorption ionization methods has opened a unique area of application for analytical mass spectrometry. Most of these methods do not require any modification of samples, and this feature, together with the minimal invasiveness of these methods allows direct analytical interrogation of biological tissues, even the real-time, in-vivo observation of biochemical processes. The proposed research focuses on the development of atmospheric pressure desorption ionization mass spectrometric methods for the characterization of biological tissues. The first question to answer is aimed at the nature of information which can be obtained, using a variety of desorption ionization methods including desorption electrospray ionization and jet desorption ionization methods. Preliminary results show, that APDI-MS methods provide information on lipids, metabolic compounds, drugs and certain proteins. First task of the proposed research is to implement a chemical imaging system, which is capable of producing 3D concentration distribution functions for various constituents of tissue samples. The developed methodology will be used to tackle fundamental pathophysiological problems including development of various malignant tumors. A database will be created for the unequivocal identification of various tissues including healthy and malignant tissue samples. In-vivo applications of MS will also be developed. JeDI-MS,similarly to water jet surgery, also utilizes high velocity water jet can directly be used as an intelligent scalpel. Real-time in-situ tissue identification has the potential of revolutionizing cancer surgery, since this way the amount of removed tissue can be minimized, while the tumor removal efficiency is maximized. The identical experimental platform can also be used to gather real-time in-situ metabolic information, which can help to understand pathophysiological changes.

Appel à propositions

ERC-2007-StG
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Contribution de l’UE
€ 630 587,70
Adresse
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Royaume-Uni

Voir sur la carte

Région
London Inner London — West Westminster
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Tatjana Palalic (Ms.)
Chercheur principal
Zoltan Takats (Dr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (2)