Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-28

Rigorous Mathematical Connections between the Theory of Computations and Statistical Physics

Objective

The proposed research aims to enhance the study of randomness in computation by using ideas of statistical physics. In particular, it aims to place the connection between computation and statistical physics --- the subject of wide heuristic discussion for more than three decades --- on rigorous mathematical ground. Its main methodological vehicle is the study of random Constraint Satisfaction Problems (CSPs). CSPs are the common abstraction of numerous real-life problems and occur in areas ranging from aerospace design to biochemistry. Their ubiquity makes the design of efficient algorithms for CSPs extremely important. At the foundation of this endeavor lies the question of why certain CSP instances are exceptionally hard while other, seemingly similar, instances are easy. Probability distributions over instances allow us to study this phenomenon in a principled way, with each CSP distribution controlled by its ratio of constrains to variables (known as constraint density). By now, it has been established that random CSPs have solutions at densities much beyond the reach of any known efficient algorithm. Understanding the origin of this gap and designing algorithms that overcome it is the main focus of the proposed research. Ideas from statistical physics will play an important role here. Specifically, in recent years, physicists have proposed a heuristic but deep theory for the evolution of the solution-space geometry of random CSPs according to which algorithmic barriers correspond to phase transitions in this evolution. Examining the validity of the physics theory is a major research undertaking that must develop and reconcile notions shared by computation and statistical physics, e.g. the role of long-range correlations. A rigorous mathematical theory of such notions will enable a much more energetic exchange of ideas between the two fields, and has the potential to bring substantial fresh ideas to the study of efficient computation.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2007-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

INSTITOUTO TECHNOLOGIAS YPOLOGISTON KAI EKDOSEON DIOFANTOS
EU contribution
€ 749 996,00
Address
N KAZANTZAKI ODOS
26 504 PATRAS
Greece

See on map

Region
Κεντρική Ελλάδα Δυτική Ελλάδα Αχαΐα
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0