Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-28

Rigorous Mathematical Connections between the Theory of Computations and Statistical Physics

Obiettivo

The proposed research aims to enhance the study of randomness in computation by using ideas of statistical physics. In particular, it aims to place the connection between computation and statistical physics --- the subject of wide heuristic discussion for more than three decades --- on rigorous mathematical ground. Its main methodological vehicle is the study of random Constraint Satisfaction Problems (CSPs). CSPs are the common abstraction of numerous real-life problems and occur in areas ranging from aerospace design to biochemistry. Their ubiquity makes the design of efficient algorithms for CSPs extremely important. At the foundation of this endeavor lies the question of why certain CSP instances are exceptionally hard while other, seemingly similar, instances are easy. Probability distributions over instances allow us to study this phenomenon in a principled way, with each CSP distribution controlled by its ratio of constrains to variables (known as constraint density). By now, it has been established that random CSPs have solutions at densities much beyond the reach of any known efficient algorithm. Understanding the origin of this gap and designing algorithms that overcome it is the main focus of the proposed research. Ideas from statistical physics will play an important role here. Specifically, in recent years, physicists have proposed a heuristic but deep theory for the evolution of the solution-space geometry of random CSPs according to which algorithmic barriers correspond to phase transitions in this evolution. Examining the validity of the physics theory is a major research undertaking that must develop and reconcile notions shared by computation and statistical physics, e.g. the role of long-range correlations. A rigorous mathematical theory of such notions will enable a much more energetic exchange of ideas between the two fields, and has the potential to bring substantial fresh ideas to the study of efficient computation.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2007-StG
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

INSTITOUTO TECHNOLOGIAS YPOLOGISTON KAI EKDOSEON DIOFANTOS
Contributo UE
€ 749 996,00
Indirizzo
N KAZANTZAKI ODOS
26 504 PATRAS
Grecia

Mostra sulla mappa

Regione
Κεντρική Ελλάδα Δυτική Ελλάδα Αχαΐα
Tipo di attività
Research Organisations
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0