Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-28

Rigorous Mathematical Connections between the Theory of Computations and Statistical Physics

Objectif

The proposed research aims to enhance the study of randomness in computation by using ideas of statistical physics. In particular, it aims to place the connection between computation and statistical physics --- the subject of wide heuristic discussion for more than three decades --- on rigorous mathematical ground. Its main methodological vehicle is the study of random Constraint Satisfaction Problems (CSPs). CSPs are the common abstraction of numerous real-life problems and occur in areas ranging from aerospace design to biochemistry. Their ubiquity makes the design of efficient algorithms for CSPs extremely important. At the foundation of this endeavor lies the question of why certain CSP instances are exceptionally hard while other, seemingly similar, instances are easy. Probability distributions over instances allow us to study this phenomenon in a principled way, with each CSP distribution controlled by its ratio of constrains to variables (known as constraint density). By now, it has been established that random CSPs have solutions at densities much beyond the reach of any known efficient algorithm. Understanding the origin of this gap and designing algorithms that overcome it is the main focus of the proposed research. Ideas from statistical physics will play an important role here. Specifically, in recent years, physicists have proposed a heuristic but deep theory for the evolution of the solution-space geometry of random CSPs according to which algorithmic barriers correspond to phase transitions in this evolution. Examining the validity of the physics theory is a major research undertaking that must develop and reconcile notions shared by computation and statistical physics, e.g. the role of long-range correlations. A rigorous mathematical theory of such notions will enable a much more energetic exchange of ideas between the two fields, and has the potential to bring substantial fresh ideas to the study of efficient computation.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2007-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

INSTITOUTO TECHNOLOGIAS YPOLOGISTON KAI EKDOSEON DIOFANTOS
Contribution de l’UE
€ 749 996,00
Adresse
N KAZANTZAKI ODOS
26 504 PATRAS
Grèce

Voir sur la carte

Région
Κεντρική Ελλάδα Δυτική Ελλάδα Αχαΐα
Type d’activité
Research Organisations
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0