Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Generative Models of Human Cognition

Objetivo

A fundamental issue in the study of human cognition is what computations are carried out by the brain to implement cognitive processes. The connectionist framework assumes that cognitive processes are implemented in terms of complex, nonlinear interactions among a large number of simple, neuron-like processing units that form a neural network. This approach has been used in cognitive psychology - often with some success – to develop functional models that clearly represent a great advance over previous verbal-diagrammatic models because they can produce highly detailed simulations of human skilled performance and its breakdown following brain damage. However, a crucial step for the computational modeling of cognition is to bridge the gap between function and structure. Much of the modeling work has been carried out using connectionist networks that have no biological plausibility beyond the metaphor of “neuron-like” processing. Most models have one, or more often a combination, of the following undesirable features: i) strictly feed-forward spread of activation (e.g. no feedback and/or lateral connections); ii) implausible learning procedures (e.g. error back-propagation); iii) implausible learning environment (e.g. supervised learning). Researchers have chosen to ignore these problems as it was seen as an essential compromise to achieve efficient learning of complex cognitive tasks. The aim of the present research program is to exploit the latest findings in neural network and machine learning research to develop generative connectionist models of cognition. Generative models are appealing because they represent plausible models of cortical learning that emphasize the mixing of bottom-up and top-down interactions in the brain. Moreover, generative models of cognition would offer a unified theoretical framework that encompasses classic connectionism and the emerging Bayesian approach to cognition, as well as a means to bridge the gap between neurons and behavior.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2007-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

UNIVERSITA DEGLI STUDI DI PADOVA
Aportación de la UE
€ 492 200,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0