Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Hamiltonian Actions and Their Singularities

Objetivo

In this project I intend to substantially advance research in different fields in contemporary symplectic geometry. The project is articulated in five sections: A. Singular symplectic and Poisson reduction of cotangent bundles. I will focus in an unfinished topic in the theory of singular reduction: its application to cotangent bundles. I will study the fibered structure of the singular reduced spaces in the Poisson and symplectic cases. B. Singular reduction in generalized complex geometry. In the last two years we have seen a dramatic impulse of the theory of Hamiltonian actions and its reduction theory in generalized complex geometry. I will study the problem of the singular reduction of this geometry. This is a relevant problem that has remained untouched and which is expected to attract strong international scientific efforts in a near future. C. Reduction and groupoids. There is an increasing interest in the reduction theory of Hamiltonian groupoid actions and its relationship with Poisson geometry. I will study these topics in both the regular and singular settings. D. Local geometry of Hamiltonian actions. I will produce a normal form adapted to cotangent-lifted Hamiltonian actions analogous to the Marle-Guillemin-Sternberg normal form for arbitrary symplectic manifolds. This will reflect the original fibered geometry of the cotangent bundle and it will be applied to the study of the local properties of the spaces obtained in A., as well as to the investigation of the local dynamics of symmetric Hamiltonian systems (see E.). Also, I will investigate the existence of such normal forms in Poisson and generalized complex geometries. E. Bifurcations of relative equilibria in Hamiltonian systems. I will apply the results of D. to the qualitative study of the dynamics of Hamiltonian systems of mechanical type. Specifically, it is to be expected that the fibered geometry of the normal form obtained in D. will be crucial to the study of their bifurcations.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2007-2-1-IEF
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

THE UNIVERSITY OF MANCHESTER
Aportación de la UE
€ 161 225,98
Dirección
OXFORD ROAD
M13 9PL Manchester
Reino Unido

Ver en el mapa

Región
North West (England) Greater Manchester Manchester
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0