Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Hamiltonian Actions and Their Singularities

Obiettivo

In this project I intend to substantially advance research in different fields in contemporary symplectic geometry. The project is articulated in five sections: A. Singular symplectic and Poisson reduction of cotangent bundles. I will focus in an unfinished topic in the theory of singular reduction: its application to cotangent bundles. I will study the fibered structure of the singular reduced spaces in the Poisson and symplectic cases. B. Singular reduction in generalized complex geometry. In the last two years we have seen a dramatic impulse of the theory of Hamiltonian actions and its reduction theory in generalized complex geometry. I will study the problem of the singular reduction of this geometry. This is a relevant problem that has remained untouched and which is expected to attract strong international scientific efforts in a near future. C. Reduction and groupoids. There is an increasing interest in the reduction theory of Hamiltonian groupoid actions and its relationship with Poisson geometry. I will study these topics in both the regular and singular settings. D. Local geometry of Hamiltonian actions. I will produce a normal form adapted to cotangent-lifted Hamiltonian actions analogous to the Marle-Guillemin-Sternberg normal form for arbitrary symplectic manifolds. This will reflect the original fibered geometry of the cotangent bundle and it will be applied to the study of the local properties of the spaces obtained in A., as well as to the investigation of the local dynamics of symmetric Hamiltonian systems (see E.). Also, I will investigate the existence of such normal forms in Poisson and generalized complex geometries. E. Bifurcations of relative equilibria in Hamiltonian systems. I will apply the results of D. to the qualitative study of the dynamics of Hamiltonian systems of mechanical type. Specifically, it is to be expected that the fibered geometry of the normal form obtained in D. will be crucial to the study of their bifurcations.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2007-2-1-IEF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

THE UNIVERSITY OF MANCHESTER
Contributo UE
€ 161 225,98
Indirizzo
OXFORD ROAD
M13 9PL Manchester
Regno Unito

Mostra sulla mappa

Regione
North West (England) Greater Manchester Manchester
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0