Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Random Walks on Groups and Representation Theory

Objetivo

"Locally compact groups have many unitary representations. For example, the regular representation, or more generally, the quasi-regular representations arising as function spaces over group actions. These representations can be written as direct integrals of irreducible ones. The space of all irreducible unitary representations is the ""unitary dual"" of the group. It exists, and has a Borel structure and a funny topology that can be described abstractly, but the truth is, that for a general group, this space is a complete mystery. In fact, we don't know even a single non-trivial representation! The main objective of the proposed research is to study the unitary dual of a locally compact groups. We intend to do this by breaking it up into pieces, and study those pieces and the mutual relations between them. The ""pieces"" that we propose to study are ""Generalized Principal Series"" associated with Poisson Boundaries which stem from Random Walks on the group. The theory of Random Walks provides us spaces endowed with very strong ergodic properties - the Poisson boundaries of the random walks, and their factors. We conjecture that the associated quasi-regular representations are irreducible. One can use these spaces to construct not just one representation, but a series of such. These series could be called ""generalized principal series"", as they form a generalization of the principal series arise in the representation theory of semi-simple groups. We propose certain character formula that, we believe, serves as an invariant associating the random walk with the corresponding representations. Aiming towards our goal, we propose various intermediate conjectures that could be studied independently, along with related subprojects concerning the study of the asymptotics of random walks, the ergodic properties of the boundary actions, the structure of the lattice of factors of the Poisson Boundary, and related topics"

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2007-4-3-IRG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IRG - International Re-integration Grants (IRG)

Coordinador

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Aportación de la UE
€ 100 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0