Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-04-16

Optical Interconnections for VLSI and Electronic Systems

Objetivo

The overall objective of OLIVES was to develop optical interconnections for use in advanced electronic computer and processor systems that were expected to significantly improve performance compared with the electrical alternative. The project linked four of Europe's leading optical, semiconductor and computer companies with a chemical company and five universities, and aimed towards the commercial exploitation in high-performance processors from the mid-1990s onwards.
The overall objective of OLIVES was to develop optical interconnections for use in advanced electronic computer and processor systems, that were expected to significantly improve performance compared with the electrical alternative. The project focused on the development, construction and assessment of a set of demonstrators which acted as test beds for 2-dimensional and 3-dimensional optical interconnections. These demonstrators covered the application of optics to both clock and data distribution at the chip, board and interboard levels.
Significant advances were made in the enabling technologies of holography, silica on silicon waveguides, precision mounting of optical elements, optical Stark modulators, detector arrays, and receiver and driver arrays in emitter coupled logic (ECL) and complementary metal oxide semiconductor (CMOS). A first prototype based on the optical mastercard was constructed. Clear applications for the gallium arsenide on silicon technology in optical motherboards and optoelectronics CMOS were identified, and collaborative research and development established. The development of stable cross linked polymers for waveguides and modulators also opened up many new possibilities. Overall, it has become clear that the comparison of optical and electrical interconnects is very system specific and a scheme which offers no advantages in one system may be very advantageous in another, depending on the precise system requirements.
Results for the major demonstrators are as follows: the optimum fanout range for the chip level optical clock distribution (chip area to area demonstrator) network was found to lie between 10 and 100; the benefits of chip area to area interconnects were considered in the context of neural networks where simulations of a 1000-node system showed a potential performance gain of several hundred; the optical bus would be used for the interconnection of several nodes and shared store in a coarse grain multiprocessor mainframe co mputer; the full benefit of the mastercard interconnects in the context of real time processors is the reduction in the volume occupied by the interconnection medium.
Finally, studies of the potential applications for optics to back plane busses in large departmental servers and asynchronous transfer mode (ATM) switches are initiated.
The project focused on the development, construction and assessment of a set of demonstrators which acted as test-beds for two- and three-dimensional optical interconnections. These demonstrators covered the application of optics to both clock and data distribution at the chip, board and inter-board levels.

To provide the components required for these demonstrators a significant technological effort was made in the fields of holography, guided wave components, receiver circuitry and optical modulators. In addition, precision alignment and hybridisation techniques for both the mounting of the optoelectronic components and the registration of the boards themselves were developed.

In view of the present state of the art in the monolithic integration of active optical components and silicon circuitry, hybrid optoelectronic integration was used throughout the demonstrator construction phase. However, monolithic integration may offer great potential advantages, and in parallel with the demonstrator development a study of the growth of III-V compounds on silicon was undertaken. In addition, a study of polymeric materials for optical modulators is being included, since these may offer significant advantages over alternative techniques.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Datos no disponibles

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

Datos no disponibles

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

Datos no disponibles

Coordinador

BNR Europe Ltd
Aportación de la UE
Sin datos
Dirección
London Road
CM17 9NA Harlow
Reino Unido

Ver en el mapa

Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Participantes (9)

Mi folleto 0 0