Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Protein signalling pathways elucidated via novel correlation analysis of molecular dynamics simulations

Objective

Signal transduction enables biological cells to respond to external stimuli such as light, odours, hormones, or growth factors. Signalling is involved in numerous biological processes and dysfunction of signalling has been associated to severe conditions such as cancer or Alzheimer’s disease. Whereas the knowledge of signal transduction on the cellular level has seen impressive progress within the last years, the molecular mechanisms involved in signalling remain mostly unknown. Intra-protein signalling is accomplished by subtle configurational changes and/or rapid dynamic processes which are difficult to assess experimentally. Therefore, we aim to employ molecular dynamics (MD) simulations to elucidate intra-protein signalling pathways and molecular mechanisms involved in signalling. Two important classes of signalling proteins will be studied: G-protein coupled receptors (GPCRs) and PDZ protein binding domains. The key to elucidate the signalling pathways will be to identify the correlations in protein dynamics and ensembles which transmit the biological signal. We plan to employ procedures from information theory and multivariate analysis to directly assess the propagation of the signal in the protein motions. The approach promises to clearly separate intra-protein processes involved in signalling from motions and interactions which may be important (e.g. for protein stability), but which do not contribute to the signal. Moreover, the simulations will allow us to distinguish between the “induced-fit” and the “conformational selection” model for signal transduction. By applying these methods to GPCRs and different PDZ domains we aim to determine common routes of information transfer within these important classes of proteins. Understanding how information is transferred within living organisms is a prerequisite for interfering with signalling, and hence our approach may contribute to novel therapies in the future.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-IEF-2008
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

UPPSALA UNIVERSITET
EU contribution
€ 172 192,87
Address
VON KRAEMERS ALLE 4
751 05 Uppsala
Sweden

See on map

Region
Östra Sverige Östra Mellansverige Uppsala län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0