Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Dynamics of Large Group Actions, Rigidity, and Diophantine Geometry

Objetivo

In our project we address several fundamental questions regarding ergodic-theoretical properties of actions of large groups. The problems that we plan to tackle are not only of central importance in the abstract theory of dynamical systems, but they also lead to solutions of a number of open questions in Diophantine geometry such as the Batyrev--Manin and Peyre conjectures on the asymptotics and the distribution of rational points on algebraic varieties, a generalisation of the Oppenheim conjecture on distribution of values of polynomial functions, a generalisation of Khinchin and Dirichlet theorems on Diophantine approximation in the setting of homogeneous varieties, and estimates on the number of integral points (with almost prime coordinates satisfying polynomial and congruence equations. The proposed research is expected to imply profound connections between diverse areas of mathematics simultaneously enriching each of them. For instance, we expect to establish a precise relation between the generalised Ramanujan conjecture in the theory of automorphic forms and the order of Diophantine approximation on algebraic varieties. We also plan to use our results on counting lattice points to derive estimates on multiplicities of automorphic representations and prove results in direction of Sarnak's density hypothesis. We investigate the problem of distribution of orbits, raised by Arnold and Krylov in sixties, the problem of multiple recurrence, pioneered by Furstenberg in seventies, and the problem of rigidity of group actions, formulated by Zimmer in eighties. We plan to compute the asymptotic distribution of orbits for actions on general homogeneous spaces, to establish multiple recurrence for large classes of actions of nonamenable groups, to prove isomorphism and factor rigidity of homogeneous actions and rigidity of actions under perturbations.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2009-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

UNIVERSITY OF BRISTOL
Aportación de la UE
€ 629 999,80
Dirección
BEACON HOUSE QUEENS ROAD
BS8 1QU Bristol
Reino Unido

Ver en el mapa

Región
South West (England) Gloucestershire, Wiltshire and Bristol/Bath area Bristol, City of
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0