Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Legendrian contact homology and generating families

Objetivo

A contact structure on an odd dimensional manifold in a maximally non integrable hyperplane field. It is the odd dimensional counterpart of a symplectic structure. Contact and symplectic topology is a recent and very active area that studies intrinsic questions about existence, (non) uniqueness and rigidity of contact and symplectic structures. It is intimately related to many other important disciplines, such as dynamical systems, singularity theory, knot theory, Morse theory, complex analysis, ... Legendrian submanifolds are a distinguished class of submanifolds in a contact manifold, which are tangent to the contact distribution. These manifolds are of a particular interest in contact topology. Important classes of Legendrian submanifolds can be described using generating families, and this description can be used to define Legendrian invariants via Morse theory. Other the other hand, Legendrian contact homology is an invariant for Legendrian submanifolds, based on holomorphic curves. The goal of this research proposal is to study the relationship between these two approaches. More precisely, we plan to show that the generating family homology and the linearized Legendrian contact homology can be defined for the same class of Legendrian submanifolds, and are isomorphic. This correspondence should be established using a parametrized version of symplectic homology, being developed by the Principal Investigator in collaboration with Oancea. Such a result would give an entirely new type of information about holomorphic curves invariants. Moreover, it can be used to obtain more general structural results on linearized Legendrian contact homology, to extend recent results on existence of Reeb chords, and to gain a much better understanding of the geography of Legendrian submanifolds.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2009-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

UNIVERSITE PARIS-SUD
Aportación de la UE
€ 223 762,25
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (2)

Mi folleto 0 0