Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-28

Legendrian contact homology and generating families

Ziel

A contact structure on an odd dimensional manifold in a maximally non integrable hyperplane field. It is the odd dimensional counterpart of a symplectic structure. Contact and symplectic topology is a recent and very active area that studies intrinsic questions about existence, (non) uniqueness and rigidity of contact and symplectic structures. It is intimately related to many other important disciplines, such as dynamical systems, singularity theory, knot theory, Morse theory, complex analysis, ... Legendrian submanifolds are a distinguished class of submanifolds in a contact manifold, which are tangent to the contact distribution. These manifolds are of a particular interest in contact topology. Important classes of Legendrian submanifolds can be described using generating families, and this description can be used to define Legendrian invariants via Morse theory. Other the other hand, Legendrian contact homology is an invariant for Legendrian submanifolds, based on holomorphic curves. The goal of this research proposal is to study the relationship between these two approaches. More precisely, we plan to show that the generating family homology and the linearized Legendrian contact homology can be defined for the same class of Legendrian submanifolds, and are isomorphic. This correspondence should be established using a parametrized version of symplectic homology, being developed by the Principal Investigator in collaboration with Oancea. Such a result would give an entirely new type of information about holomorphic curves invariants. Moreover, it can be used to obtain more general structural results on linearized Legendrian contact homology, to extend recent results on existence of Reeb chords, and to gain a much better understanding of the geography of Legendrian submanifolds.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: https://op.europa.eu/de/web/eu-vocabularies/euroscivoc.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2009-StG
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

UNIVERSITE PARIS-SUD
EU-Beitrag
€ 223 762,25
Adresse
RUE GEORGES CLEMENCEAU 15
91405 ORSAY CEDEX
Frankreich

Auf der Karte ansehen

Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (2)

Mein Booklet 0 0