Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Intelligent Stochastic Computation Methods for Complex Statistical Model Learning

Objectif

Very recently, it has been claimed that the Bayesian paradigm has revolutionized statistical thinking in numerous fields of research, as a considerable amount of novel Bayesian statistical models and estimation algorithms have gained popularity among scientists. Despite of the evident success of the Bayesian approach, there are also many research problems where the computational challenges have so far proven to be too exhaustive to promote wide-spread use of the state-of-the-art Bayesian methodology. In particular, due to significant advances in measurement technologies, e.g. in molecular biology, a constant need for analyzing and modeling very large and complex data sets has emerged on a wide scale during the past decade. Such needs are even anticipated to rapidly increase in near future with the current technological advances. The prevailing situation is therefore somewhat paradoxical, as the theoretical superiority of the Bayesian paradigm as an uncertainty handling framework is widely acknowledged, yet it can be unable to provide practically applicable solutions to complex scientific problems. To resolve this issue, the research project will have a focus on stochastic computational and modeling strategies to develop methods that overcome problems associated with the analysis of highly complex data sets. With these methods we aim to be able to solve a multitude of statistical learning problems for data sets which cannot yet be reliably handled in practice by any of the existing Bayesian tools. Our approaches will build upon recent advances in Bayesian predictive modeling and adaptive stochastic Monte Carlo computation, to create a novel family of parallel interacting learning algorithms. Several significant statistical modeling problems will be considered to demonstrate the potential of the developed methods. Our goal is also to provide implementations of some of the algorithms as freely available software packages to benefit concretely the scientific community.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2009-StG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

HELSINGIN YLIOPISTO
Contribution de l’UE
€ 550 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0