Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-30

Likelihood-based estimation of non-linear and non-normal DSGE models

Objetivo

DSGE models are the standard tool of quantitative macroeconomics. We use them to measure economics phenomena and to provide policy advice. However, since Kydland and Prescott s 1982, the profession has fought about how to take these models to the data. Kydland and Prescott proposed to calibrate their model. Why? Macroeconomists could not compute their models efficiently. Moreover, the techniques required for estimating DSGE models using the likelihood did not exist. Finally, models were ranked very badly by likelihood ratio tests. Calibration offered a temporary solution. By focusing only on a very limited set of moments of the model, researchers could claim partial success and keep developing their theory. The landscape changed in the 1990s. There were developments along three fronts. First, macroeconomists learned how to efficiently compute equilibrium models with rich dynamics. Second, statisticians developed simulation techniques like Markov chain Monte Carlo (MCMC), which we require to estimate DSGE models. Third, and perhaps most important, computer power has become so cheap that we can now do things that were unthinkable 20 years ago. This proposal tries to estimate non-linear and/or non-normal DSGE models using a likelihood approach. Why non-linear models? Previous research has proved that second order approximation errors in the policy function have first order effects on the likelihood function. Why non-normal models? Time-varying volatility is key to understanding the Great Moderation. Kim and Nelson (1999), McConnell and Pérez-Quirós (2000), and Stock and Watson (2002) have documented a decline in the variance of output growth since the mid 1980s. Only DSGE models with richer structure than normal innovations can account for this.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2009-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

FUNDACION CENTRO DE ESTUDIOS MONETARIOS Y FINANCIEROS
Aportación de la UE
€ 909 942,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0