Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Magnetic Molecules and Hybrid Materials for Molecular Spintronics

Ziel

In this project we intend to design new magnetic molecules and new classes of magnetic molecular materials which, conveniently nanostructured, can be of interest in molecular spintronics, quantum computing and, in general, in nanomagnetism. The project pretends to cover either the development of molecule-based materials with interesting spintronic properties (molecule-based spintronics), as well as the design and study of magnetic molecules of interest in unimolecular spintronics and quantum computing. The objectives will be the following: - Use of molecule-based magnets for the preparation of multilayered spintronic structures (molecular spin valves) - Design of molecule-based magnetic materials exhibiting multifunctional properties (ferromagnetic superconductors, magnetic multilayers and magnetic/conducting multilayers) - Nanopatterning of magnetic nanostructures on surfaces via a molecular approach. - Chemical control of quantum spin dynamics and decoherence in single-molecule magnets based on magnetic polyoxometalates with the aim of developing qu-bits based on these inorganic molecules. - Positioning and addressing magnetic polyoxometalates on surfaces. An unconventional strategy of this project is the use of purely inorganic building blocks, as well as of inorganic magnetic molecules to design these magnetic materials, instead of using metal-organic molecular systems. This purely inorganic molecular building-block approach will benefit from the robustness of this kind of molecules and materials. Another characteristic feature of this project is the combination of top-down and bottom-up approaches for the processing of the molecules / materials. Thus, the project will exploit the advantage of using lithographic techniques (high throughput, easy scalability, etc.) in combination with the chemical bottom-up design of the molecular system, for the nanopatterning of the materials and the positioning of the molecules on surfaces with nanoscale accuracy.

Aufforderung zur Vorschlagseinreichung

ERC-2009-AdG
Andere Projekte für diesen Aufruf anzeigen

Gastgebende Einrichtung

UNIVERSITAT DE VALENCIA
EU-Beitrag
€ 1 679 700,00
Adresse
AVENIDA BLASCO IBANEZ 13
46010 Valencia
Spanien

Auf der Karte ansehen

Region
Este Comunitat Valenciana Valencia/València
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Angeles Sanchis (Ms.)
Hauptforscher
Eugenio Coronado (Dr.)
Links
Gesamtkosten
Keine Daten

Begünstigte (1)