Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Molecular basis of carnivory Excitability, movement, and endocrinology of plant traps

Objective

Predation plays a major role in energy and nutrient flow in the biological food chain. Carnivory is best known from the animal kingdom, but the plant kingdom has flesh eaters as well. This field has attracted much interest since Darwin s time, but many fundamental properties of the carnivorous life style remain largely unexplored. This project will close this gap by a multidisciplinary approach based on state-of-art bioinformatics, molecular biology, chemistry and biophysics. It will focus on 1. Genome/Transcriptome Profiling to study the genetic make-up of carnivorous plants (CPs) and the evolution of carnivory 2. Origin of Excitability to investigate whether CPs gained the inventory to fire action potentials from captured animals or rather evolved excitability independently 3. Prey Recognition on the basis of mechanical- and chemical senses 4. Endocrinology Structure and function of exocrine glands - CPs offer a unique system to study the biology of digestive glands (exo-/endocytosis) in plants. Over 600 plant species use special structures to capture animals such as insects. The genome/transcriptome of major trap types such as snap traps, tentacles traps, suction traps, corkscrew traps, and pitfall traps will be compared and trap-specific genes identified. Among them those giving rise to membrane excitation, excitation-contraction coupling and exocrine systems (glands) will be functionally characterized in detail. Using loss-of-function mutants and transformed plants with respect to CP-specific the role of CP-specific in electrical signalling, excitation contraction coupling, and excretion will be unravelled. The evolution of electrical activity and carnivory of plants is worth being examined not only for its importance in general, but also as a model for understanding the evolution of the human nervous and endocrine system.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2009-AdG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
EU contribution
€ 2 481 057,00
Address
SANDERRING 2
97070 Wuerzburg
Germany

See on map

Region
Bayern Unterfranken Würzburg, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0