Skip to main content

Minimum Inertia Trajectory


Motor control is an important scientific topic in many research fields, such as neurophysiology, cognitive sciences or cybernetics. This project is targeted on the understanding of which are the haptic information exploited for controlling the direction of reaching movements.

This mobility involves collaboration between cognitive sciences, i.e. human movement sciences (Post graduate) and engineering (Host institution). The state of arts, carried out on multidisciplinary such as brain research, neurology, human anatomy, or biomechanics allowed showing a sensitivity to inertia parameter during arm reaching movement.

Recent experiments identify the inertia tensor as an invariant, which quantifies the mass distribution of a limb, i.e. the resistance of the limbs to rotations in different directions. The question addressed by these outcomes is whether the inertia tensor is exploited to control the direction of free and unconstrained arm trajectory.

In this context, a new model is developed in order to predict a trajectory allowing reducing the inertia resistance of arm movement toward a target, i.e. the Minimum Inertia Trajectory (MIT). The host institution develops a haptic interfaces technology called the arm Exoskeleton. This interface will be used to manipulate different critical physical parameters involved in the directional control of arm movements.

We propose to evaluate the robustness of MIT hypothesis in three experiments:
- in comparing it with the classical model of literature
- in manipulating task constraints
- in disturbing other potential physical parameters which could also be conveyed by proprioceptive channel.

The work plan will be organized in three periods:
- familiarisation with exoskeleton, acquisition and analyse of data,
- dissemination of the results (articles and international scientific meeting)
- implication for improve the reality of interface technology in several domains such as virtual reality, robotics, and ergonomic.

Call for proposal

See other projects for this call

Funding Scheme

EIF - Marie Curie actions-Intra-European Fellowships
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries