Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Spatial and Temporal Dynamics of the Notch Ligand Delta During Development in Drosophila Melagonaster

Objective

The Notch (N) pathway is a highly conserved and ubiquitous signalling system involved in determining cell fate. There is a medical relevance to understand the molecular mechanisms involved in N signalling as N dysfunction is linked to cancer, stroke and Alzheimer’s disease. N is activated by its ligands (Delta/Serrate/LAG2;DSL) expressed on adjacent cells and there is a clear correlation between ubiquitination and endocytosis for effective ligand signalling. Although several models for DSL ligand endocytosis have been identified, the behaviour of DSL ligands during these events remains unclear. Attempts to address this issue have lacked the ability to follow spatial and temporal movement of DSL ligands accurately. The current project will therefore address these issues by using live fluorescent imaging techniques to follow movement of Delta (Dl) ligand, fused to a fluorescent reporter, in the wing imaginal disc of Drosophila Melagonaster. This will be achieved by examining Dl molecules present in large intracellular vesicles throughout the wing disc where the ubiquitin ligases Neuralized and Mindbomb1 are expressed. To establish whether Dl activity is dynamic in these particles, we will utilise the FRAP imaging technique. We will follow the movement of Dl molecules from these particles, using a photoswitchable reporter to address the model of “recycling”, where DSL ligands are processed into an active state within these vesicles before being trafficked back to the cell surface to activate N. The effects of impairing endocytosis upon Dl movement from these particles will also be addressed. The project will also address the importance of endocytosis/recycling for effective Dl/N signalling via utilisation of a fluorescent N reporter. These studies will advance our understanding about the dynamic nature of Dl molecules and further assist in elucidating the mechanisms involved in endocytic regulation of N signalling during development.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ERG - European Re-integration Grants (ERG)

Coordinator

IDRYMA TECHNOLOGIAS KAI EREVNAS
EU contribution
€ 45 000,00
Address
N PLASTIRA STR 100
70 013 IRAKLEIO
Greece

See on map

Region
Νησιά Αιγαίου Κρήτη Ηράκλειο
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0