Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Homotopy algebras in homotopy theory and higher category theory

Objectif

We will study in this project exciting new interactions and applications between two fundamental modern research areas of mathematics, homotopy theory and higher category theory. These areas of mathematics are used in applied sciences. For instance, homotopy theory is used in robotics and in computer science. Higher category theory studies the way in which complex structures arising for instance in physics, computer science, biology, can be described by a common language, the one of ‘weak n-categories’. In this project, we apply ideas and techniques from homotopy theory to higher category theory. This will provide new and groundbreaking insights into the latter and will return homotopical applications. We will study certain structures which resembles simple algebraic ones but which are in fact much more complex because the defining data are specified ‘up to homotopy’. These structures are called homotopy algebras. We will then study ways in which a homotoy algebra can be made suitably equivalent to a simpler structure, a strict algebra. This process is called rigidification. We will then apply this theory to weak n-categories. We will view one of the models of weak n-categories, due to Tamsamani, as homotopy algebras, and study its rigidification. This will produce a new important type of higher categorical structure, called weakly globular n-fold categories. These will then be used in applications. We will obtain a new way to describe the building blocks of topological spaces, called n-types, and we will understand their connection with iterated loop spaces. We will also pursue other homotopical applications which will lead to the computation of important invariants used to describe topological spaces.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2009-RG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IRG - International Re-integration Grants (IRG)

Coordinateur

UNIVERSITY OF LEICESTER
Contribution de l’UE
€ 100 000,00
Adresse
UNIVERSITY ROAD
LE1 7RH Leicester
Royaume-Uni

Voir sur la carte

Région
East Midlands (England) Leicestershire, Rutland and Northamptonshire Leicester
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (1)

Mon livret 0 0