Ziel
Ability to exploit spin transport in semiconductor promises new logic devices with enhanced functionality, higher speeds and reduce power consumption. In addition, these new devices could be fabricated with many of the tools already used in the electronic industry. Therefore, one of the current objectives in the research in Spintronics is to develop new materials of easy compatibility with semiconductor materials and processing. Development of new materials suitable for spin-polarized transport supposes to devote many efforts and resources to the quest of 100 spinpolarized materials.
The important room temperature ferromagnetic metals (Co, Fe and Ni) and their alloys have a spin-polarization of the carriers near the Fermi level of aprox. 50 %. Another research area, which provides serious challenge, is that of spin injection. Spin injection is the process by which a highly spin polarization current is transmitted from the ferromagnetic metal into another material such as another metal, a semiconductor, while retaining its spin-polarization character. The most difficult, and no doubt the most important, case of spin injection is that from a ferromagnetic into a semiconductor.
However, despite considerable research efforts over the past decade, initial progress has been remarkably slow. Recent findings have been carried out by the Thin film Magnetism Group of Prof. Bland at Cavendish Laboratory concerning quantum transport in Cu nanowires. The nanowires were created by bringing macroscopic Cu wires into and out of contact, mechanically controlled break junction technique.
Wissenschaftliches Gebiet
Schlüsselbegriffe
Aufforderung zur Vorschlagseinreichung
FP6-2004-MOBILITY-5
Andere Projekte für diesen Aufruf anzeigen
Finanzierungsplan
EIF - Marie Curie actions-Intra-European FellowshipsKoordinator
CAMBRIDGE
Vereinigtes Königreich