Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Rough path theory, differential equations and stochastic analysis

Objetivo

We propose to study stochastic (classical and partial) differential equations and various topics of stochastic analysis, with particular focus on the interplay with T. Lyons' rough path theory:
1) There is deep link, due to P. Malliavin, between the theory of hypoelliptic second order partial differential operators and certain smoothness properties of diffusion processes, constructed via stochastic differential equations. There is increasing evidence (F. Baudoin, M. Hairer &) that a Markovian (=PDE) structure is dispensable and that Hoermander type results are a robust feature of stochastic differential equations driven by non-degenerate Gaussian processes; many pressing questions have thus appeared.
2) We return to the works of P.L. Lions and P. Souganidis (1998-2003) on a path-wise theory of fully non-linear stochastic partial differential equations in viscosity sense. More specifically, we propose a rough path-wise theory for such equations. This would in fact combine the best of two worlds (the stability properties of viscosity solutions vs. the smoothness of the Ito-map in rough path metrics) to the common goal of the analysis of stochastic partial differential equations. On a related topic, we have well-founded hope that rough paths are the key to make the duality formulation for control problems a la L.C.G. Rogers (2008) work in a continuous setting.
3) Rough path methods should be studied in the context of (not necessarily continuous) semi-martingales, bridging the current gap between classical stochastic integration and its rough path counterpart. Related applications are far-reaching, and include, as conjectured by J. Teichmann, Donsker type results for the cubature tree (Lyons-Victoir s powerful alternative to Monte Carlo).

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2010-StG_20091028
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

TECHNISCHE UNIVERSITAT BERLIN
Aportación de la UE
€ 677 876,29
Dirección
STRASSE DES 17 JUNI 135
10623 Berlin
Alemania

Ver en el mapa

Región
Berlin Berlin Berlin
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (2)

Mi folleto 0 0