Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-29

Photometric Robust Features for Object Recognition in Colour Images

Objetivo

For the interpretation of visual information the recognition of objects is crucial. Object recognition is complicated by a variety of photometric variations, including changes of shadows, shading, specularities and illuminant colour. For object recognition to be successful in real-world applications it is essential that robustness with respect to these photometric variations is obtained. This will prove important in many application fields such as surveillance, robotics, defence, manufacturing industry, and image and video search engines.

Although the greater part of image data is in colour format nowadays, most object recognition systems are still based on luminance alone. Robustness with respect to undesired photometric variations can be greatly improved by extending these algorithms to colour. In the field of colour vision invariants are derived from physical models of the reflection of light on surfaces. These invariants have however three drawbacks which have to be taken into account. Firstly, the invariant features are derived from physical models, which only hold in controlled environments. Secondly, the invariants become unstable and unusable in the absence of colour. Thirdly, in the absence of colours photometric invariance is unattainable.

In this proposal we aim to incorporate the photometric invariance theory into the computation of features for object recognition. Instead of full invariance, which results in unusable features when deviations to the physical model occur or when colour is absent, we aim at photometric robustness. We intend to obtain the robustness in two steps: 1. Enrich the existing features used in object recognition with photometric invariant features accompanied by confidence measures. 2. Apply machine -learning techniques to learn the most discriminative features. The machine learning techniques enable the object recognition system to choose for each object between luminance based features and photometric invariant colour features.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP6-2004-MOBILITY-5
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

EIF - Marie Curie actions-Intra-European Fellowships

Coordinador

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
Aportación de la UE
Sin datos
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0