Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-05-29

Photometric Robust Features for Object Recognition in Colour Images

Ziel

For the interpretation of visual information the recognition of objects is crucial. Object recognition is complicated by a variety of photometric variations, including changes of shadows, shading, specularities and illuminant colour. For object recognition to be successful in real-world applications it is essential that robustness with respect to these photometric variations is obtained. This will prove important in many application fields such as surveillance, robotics, defence, manufacturing industry, and image and video search engines.

Although the greater part of image data is in colour format nowadays, most object recognition systems are still based on luminance alone. Robustness with respect to undesired photometric variations can be greatly improved by extending these algorithms to colour. In the field of colour vision invariants are derived from physical models of the reflection of light on surfaces. These invariants have however three drawbacks which have to be taken into account. Firstly, the invariant features are derived from physical models, which only hold in controlled environments. Secondly, the invariants become unstable and unusable in the absence of colour. Thirdly, in the absence of colours photometric invariance is unattainable.

In this proposal we aim to incorporate the photometric invariance theory into the computation of features for object recognition. Instead of full invariance, which results in unusable features when deviations to the physical model occur or when colour is absent, we aim at photometric robustness. We intend to obtain the robustness in two steps: 1. Enrich the existing features used in object recognition with photometric invariant features accompanied by confidence measures. 2. Apply machine -learning techniques to learn the most discriminative features. The machine learning techniques enable the object recognition system to choose for each object between luminance based features and photometric invariant colour features.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

FP6-2004-MOBILITY-5
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

EIF - Marie Curie actions-Intra-European Fellowships

Koordinator

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE
EU-Beitrag
Keine Daten
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten
Mein Booklet 0 0