Objective
The LCAOS project will develop and test a new diagnostic tool, able to detect:
(i) the presence of lung cancer (LC), and
(ii) an increased risk of a patient developing LC in the future.
Diagnostic tests currently available are unsuitable for widespread screening because they are costly, occasionally miss tumours, are not time-efficient, nor free of complications.
LCAOS will overcome these problems by using an approach based on volatile biomarkers emitted from cell membranes. A multidisciplinary effort, incorporating nanotechnology, biomedical engineering, medical oncology, and computation strategies, will develop a highly-sensitive, inexpensive, and fast-response, non-invasive, artificial nose (known as, NaNose), building on the coordinator’s earlier success in this area. The NaNose will be able to detect pre-neoplastic volatile biomarkers that indicate an increased genetic risk of LC, and the presence of LC. It has already been established that these biomarkers can be detected either directly from the headspace of the cancer cells or via exhaled breath.
LCAOS will:
(i) develop arrays of chemically-sensitive field effect transistors (FETs) of non-oxidized, molecule-terminated silicon nanowires (Si NWs);
(ii) test the ability of these devices to sense volatile LC biomarkers from in-vitro tissue, and exhaled human breath;
(iii) study the signal transduction mechanism of the volatile biomarkers, using pattern recognition;
(iv) improve systems to enable the NaNose to distinguish the targeted biomarkers from environmental clutter, using methylation, expression profiling, and genome-wide sequencing; and
(v) perform clinical-related studies to assess LC conditions in actual patients & tissues, and in the presence of real-world confounding signals.
Validation will be carried out by clinician partners and professional mathematicians and computer scientists. Resources will also be allocated to ensure the commercial potential of the sensor device layout.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences medical biotechnology
- medical and health sciences clinical medicine oncology lung cancer
- engineering and technology nanotechnology
- natural sciences computer and information sciences artificial intelligence pattern recognition
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP7-HEALTH-2010-two-stage
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.