European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Physiology of the adult carotid body stem cell niche

Objetivo

The discovery of adult neural stem cells (NSCs) has broaden our view of the physiological plasticity of the nervous system,
and has opened new perspectives on the possibility of tissue regeneration and repair in the brain. NSCs reside in specialized
niches in the adult mammalian nervous system, where they are exposed to specific paracrine signals regulating their
behavior. These neural progenitors are generally in a quiescent state within their niche, and they activate their proliferation
depending on tissue regenerative and growth needs. Understanding the mechanisms by which NSCs enter and exit the
quiescent state is crucial for the comprehension of the physiology of the adult nervous system. In this project we will study
the behavior of a specific subpopulation of adult neural stem cells recently described by our group in the carotid body (CB).
This small organ constitutes the most important chemosensor of the peripheral nervous system and has neuronal glomus
cells responsible for the chemosensing, and glia-like sustentacular cells which were thought to have just a supportive role.
We recently described that these sustentacular cells are dormant stem cells able to activate their proliferation in response to a
physiological stimulus like hypoxia, and to differentiate into new glomus cells necessary for the adaptation of the organ.
Due to our precise experimental control of the activation and deactivation of the CB neurogenic niche, we believe the CB is
an ideal model to study fundamental questions about adult neural stem cell physiology and the interaction with the niche. We
propose to study the cellular and molecular mechanisms by which these carotid body stem cells enter and exit the quiescent
state, which will help us understand the physiology of adult neurogenic niches. Likewise, understanding this neurogenic
process will improve the efficacy of using glomus cells for cell therapy against neurological disease, and might help us
understand some neural tumors.

Convocatoria de propuestas

ERC-2010-StG_20091118
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-SG - ERC Starting Grant

Institución de acogida

UNIVERSIDAD DE SEVILLA
Aportación de la UE
€ 1 476 000,00
Dirección
CALLE S. FERNANDO 4
41004 Sevilla
España

Ver en el mapa

Región
Sur Andalucía Sevilla
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Margarita Martínez-Pais Loscertales (Ms.)
Investigador principal
Ricardo Pardal (Dr.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)