European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Light-In, Light-Out: Chemistry for sustainable energy technologies

Objectif

The project is concerned with a coordinated approach to the development of of novel chemical strategies for light harvesting by photovoltaic cells and light generation using light emitting electrochemical cells. Both technologies have proof of principle results from the PIs own laboratory and others world-wide. The bulk of efficient dye sensitized solar cells rely on transition metal complexes as the photoactive component as the majority of traditional organic dyes do not possess long term stability under the operating conditions of the devices. LECs based upon transition metal complexes have been shown to possess lifetimes sufficiently long and efficiencies sufficiently high to become a viable alternative technology to OLEDs in the near future. The disadvantages of state of the art devices for both technologies is that they are based upon second or third row transition metal complexes. Although these elements are expensive, the principle difficulties arise from their low abundance, which creates significant issues of sustainability if the technology is to be adopted. The aim of this project is three-fold. Firstly, to further optimise the individual technologies using conventional transition metal complexes, with increases in efficiency leading to lower metal requirements. Secondly, to explore the periodic table for metal-containing luminophores based on first row transition metals, with an emphasis upon copper and zinc containing species. The final aspect is related to the utilization of solar derived electrons for water splitting reactions, allowing the generation of hydrogen and/or reaction products of hydrogen with organic species. This latter aspect is related to the mid-term requirement for liquid fuels, regardless of the primary fuel sources utilized. The program will involve design and synthesis of new materials, device construction and evaluation (in-house and with existing academic and industrial partners) and iterative refinement of structures

Appel à propositions

ERC-2010-AdG_20100224
Voir d’autres projets de cet appel

Régime de financement

ERC-AG - ERC Advanced Grant

Institution d’accueil

UNIVERSITAT BASEL
Contribution de l’UE
€ 2 399 440,00
Adresse
PETERSPLATZ 1
4051 Basel
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Kurt Kamber (Dr.)
Chercheur principal
Edwin Charles Constable (Prof.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)