Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Efficient sequential decision making under uncertainty

Objectif

"Many applications require efficient methods for automated decision making, such as control systems, crisis response, finance, logistics, network security, robotics and traffic management. These problems involve sequential learning and decision making under uncertainty in an unknown environment. As we have incomplete information about the state and dynamics of the environment, the outcome of any specific plan is uncertain. Statistical decision theory offers a framework for finding optimal solutions, but in most problems of interest exact inference and planning are intractable.

The project will develop efficient approximate methods for nearly optimal learning and decision making in such problems. Our first goal is to obtain provably efficient algorithms for decision making in discrete, fully observable environments. Our second goal is to extend these to continuous and partially observable domains. Recent advances in statistical learning theory and in stochastic planning, make this avenue of research particularly promising. Our third theoretical goal is to consider collaborative planning among multiple agents in unknown environments for each of the above cases.

Finally, we shall develop open source code and perform extensive comparative experiments in classical benchmark problems for evaluation purposes. As a more realistic test-bed, we shall focus on the network intrusion detection and response problem, where we must safeguard a network against the attacks of malicious users.

The project coordinator is an expert on Bayesian reinforcement learning and stochastic planning and the host institution has produced seminal breakthroughs in the area of distributed planning, while both have prior experience in problems of network intrusion detection."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2010-IEF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IEF - Intra-European Fellowships (IEF)

Coordinateur

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contribution de l’UE
€ 232 777,80
Adresse
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Région lémanique Vaud
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0