Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Efficient sequential decision making under uncertainty

Obiettivo

"Many applications require efficient methods for automated decision making, such as control systems, crisis response, finance, logistics, network security, robotics and traffic management. These problems involve sequential learning and decision making under uncertainty in an unknown environment. As we have incomplete information about the state and dynamics of the environment, the outcome of any specific plan is uncertain. Statistical decision theory offers a framework for finding optimal solutions, but in most problems of interest exact inference and planning are intractable.

The project will develop efficient approximate methods for nearly optimal learning and decision making in such problems. Our first goal is to obtain provably efficient algorithms for decision making in discrete, fully observable environments. Our second goal is to extend these to continuous and partially observable domains. Recent advances in statistical learning theory and in stochastic planning, make this avenue of research particularly promising. Our third theoretical goal is to consider collaborative planning among multiple agents in unknown environments for each of the above cases.

Finally, we shall develop open source code and perform extensive comparative experiments in classical benchmark problems for evaluation purposes. As a more realistic test-bed, we shall focus on the network intrusion detection and response problem, where we must safeguard a network against the attacks of malicious users.

The project coordinator is an expert on Bayesian reinforcement learning and stochastic planning and the host institution has produced seminal breakthroughs in the area of distributed planning, while both have prior experience in problems of network intrusion detection."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

FP7-PEOPLE-2010-IEF
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

MC-IEF - Intra-European Fellowships (IEF)

Coordinatore

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contributo UE
€ 232 777,80
Indirizzo
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Svizzera

Mostra sulla mappa

Regione
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato
Il mio fascicolo 0 0