Skip to main content

Dopaminergic modulation of plasticity during social learning


This project combines computational modeling, electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and neuropharmacology to investigate the modulation of synaptic plasticity by dopamine during learning about both social and reward-based information. The purpose of the project is to evaluate biologically and computationally interpretable models for obtaining quantitative indices of synaptic plasticity during learning using both EEG and fMRI recording methods. To this aim, we apply a learning paradigm that combines both social and reward-based cues to guide behaviour. Following behavioural assessment, this paradigm will be used in pharmacological EEG and fMRI studies of healthy volunteers, employing a double-blind, placebo-controlled between-subject design with dopaminergic agents. Joint EEG and fMRI recordings will be obtained and analysed using state of the art modeling techniques, including novel approaches that embed hierarchical Bayesian learning models into nonlinear dynamic causal models. Specifically, we will test whether the models can quantify drug-induced changes in synaptic plasticity that occur as a function of trial-wise learning variables, such as reward prediction errors. Finally, we will use recent advances in model-based decoding to test whether our models can detect which pharmacological manipulation took place in any given subject. If these models prove to be mechanistically interpretable, this research could pave the way for future development of non-invasive, model-based measures of neurotransmitter regulation of synaptic plasticity in patients with psychiatric disorders.

Appel à propositions

Voir d’autres projets de cet appel


University of Zurich
Ramistrasse 71
8006 Zurich
Type d’activité
Higher or Secondary Education Establishments
Contribution de l’UE
€ 179 101,60
Contact administratif
Klaas Enno Stephan (Prof.)