Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Nanofluidic Methods for Mapping Epigenetic and Genomic Variation

Objective

The objective of this project is to investigate nanofluidic single-molecule approaches to DNA mapping using a new denaturation mapping concept developed by W. Reisner. We propose to make advances in extending these approaches to true genome scale applications. We will furthermore demonstrate that epigenomic as well as genomic variations can be mapped with these approaches. Eventually, we seek to develop a device for mapping DNA that was extracted from single-cells on-chip. At the first stage of the project, the fellow will work with Prof. Reisner (McGill Univ.), who is a leader in nanofluidics for DNA analysis, and who will enable basic advances towards genome-scale and epigenetic mapping applications. Here, the fellow will study DNA mapping techniques and will learn how to design and fabricate nanofluidic devices for that purpose. Nanofabrication encompasses highly specialised tools and techniques which the fellow requires throughout the project. At the second stage, the fellow will be hosted by Prof. A. Kristensen (Techn. Univ. of Denmark) who is an expert in nanoimprinting and microfluidics. He will enable advances towards implementing inexpensive fabrication processes with integrated microfluidics for single-cell lysis and DNA purification. The fellow will therefore learn fabrication of polymer-based devices which can be mass-produced inexpensively by injection molding and nanoimprinting. Furthermore, the fellow will learn how to operate the fabricated on-chip devices with integrated single-cell lysis and DNA purification, and subsequent DNA mapping. The broad range of competencies the fellow will acquire throughout the project will help him establish an independent career in micro/nanofluidics.
The proposed advances will contribute to technologies that can (1) speed-up large-scale genome assembly (2) analyse epigenomes/genomes from large ensembles of cells and (3) do so in an inexpensive format that can be widely distributed to potential biomedical end-users.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-IOF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IOF - International Outgoing Fellowships (IOF)

Coordinator

DANMARKS TEKNISKE UNIVERSITET
EU contribution
€ 243 467,60
Address
ANKER ENGELUNDS VEJ 101
2800 KONGENS LYNGBY
Denmark

See on map

Region
Danmark Hovedstaden Københavns omegn
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0