Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Rigidity of Scalar Curvature and Regularity for Mean Curvature Flow

Objective

The interplay between Geometry and Analysis has been among the most fruitful mathematical ideas in recent years, the most obvious example being Perelman's proof of Poincare' conjecture. I plan to pursue further this approach and make distinct progress in two different problems.

Scalar Curvature: A classical theorem in Riemannian Geometry states that nonnegative scalar curvature metrics which are flat outside a compact set must be Euclidean. The equivalent problem for positive scalar curvature is known as the Min-Oo conjecture and was recently disproven by Brendle, Marques, and myself.

I plan to show uniform area bounds for minimal surfaces in manifolds with positive scalar curvature where the bounds are attained if and only if we are on a round sphere. I also plan to show that those manifolds have an infinite number of minimal surfaces (Yau's conjecture). My approach consists of studying min-max methods in order to obtain existence of higher-index minimal surfaces.


Mean curvature flow: An hard open problem consists in determining which Lagrangians in a Calabi-Yau admit a minimal Lagrangian (SLag) in their isotopy class. A complete answer would be a breakthrough of considerable size. A possible approach consists of deforming a given Lagrangian in the direction which decreases area the most and hope to show convergence to a SLag. The difficulty with this method is that finite-time singularities can occur.

I plan to study the regularity theory for this flow and show that, for surfaces, singularities are isolated in space. My approach consists in classifying the possible blow-ups and find monotone quantities which will rule out non SLag blow-ups.


In October of last year I completed 9 years in the USA where the last 2 were spent as an Assistant Professor at Princeton University. Due to personal reasons I decided to move back to Europe. Hence this grant will provide me with the necessary financial support to continue my research.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2010-RG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IRG - International Re-integration Grants (IRG)

Coordinator

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 100 000,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0