Objectif
The interplay between Geometry and Analysis has been among the most fruitful mathematical ideas in recent years, the most obvious example being Perelman's proof of Poincare' conjecture. I plan to pursue further this approach and make distinct progress in two different problems.
Scalar Curvature: A classical theorem in Riemannian Geometry states that nonnegative scalar curvature metrics which are flat outside a compact set must be Euclidean. The equivalent problem for positive scalar curvature is known as the Min-Oo conjecture and was recently disproven by Brendle, Marques, and myself.
I plan to show uniform area bounds for minimal surfaces in manifolds with positive scalar curvature where the bounds are attained if and only if we are on a round sphere. I also plan to show that those manifolds have an infinite number of minimal surfaces (Yau's conjecture). My approach consists of studying min-max methods in order to obtain existence of higher-index minimal surfaces.
Mean curvature flow: An hard open problem consists in determining which Lagrangians in a Calabi-Yau admit a minimal Lagrangian (SLag) in their isotopy class. A complete answer would be a breakthrough of considerable size. A possible approach consists of deforming a given Lagrangian in the direction which decreases area the most and hope to show convergence to a SLag. The difficulty with this method is that finite-time singularities can occur.
I plan to study the regularity theory for this flow and show that, for surfaces, singularities are isolated in space. My approach consists in classifying the possible blow-ups and find monotone quantities which will rule out non SLag blow-ups.
In October of last year I completed 9 years in the USA where the last 2 were spent as an Assistant Professor at Princeton University. Due to personal reasons I decided to move back to Europe. Hence this grant will provide me with the necessary financial support to continue my research.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
FP7-PEOPLE-2010-RG
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Coordinateur
SW7 2AZ London
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.