Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Van der Waals Interactions in Complex Materials

Objetivo

Van der Waals (vdW) interactions are ubiquitous in nature, playing a major role in defining the structure, stability, and function for a wide variety of molecules and materials. VdW forces make the existence of molecular liquids and solids possible; they largely control protein-protein and drug-protein binding inside our bodies; they give geckos the ability to “defy gravity” attaching to walls and ceilings. An accurate first-principles description of vdW interactions is extremely challenging, since the vdW dispersion energy arises from the correlated motion of electrons and, in principle, requires many-electron quantum mechanics. Rapid increase in computer power and advances in modeling of vdW interactions have allowed to achieve “chemical accuracy” (1 kcal/mol) for binding between small organic molecules. However, the lack of accurate and efficient methods for large and complex systems hinders truly quantitative predictions of properties and functions of technologically relevant materials. We aim to construct and apply a systematic hierarchy of efficient methods for the modeling of vdW interactions with high accuracy and capacity to predict new phenomena in complex materials. Starting from quantum-mechanical first principles (adiabatic-connection fluctuation-dissipation theorem), we unify concepts from quantum chemistry (linear-response coupled-cluster and many-body perturbation theory), density-functional theory (ground-state electron-density response), and statistical mechanics (coupled-fluctuating-dipole model). Our final goal is to enable long time-scale molecular dynamics simulations with predictive power for large and complex systems of thousands of atoms. The project goes well beyond the presently possible applications and once successful will pave the road towards having a suite of first-principles modeling tools for a wide range of materials, such as biomolecules, nanostructures, solids, and organic/inorganic interfaces.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2011-StG_20101014
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Aportación de la UE
€ 1 356 999,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0