European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Quantitative approaches for strongly correlated quantum systems in equilibrium and far from equilibrium

Objectif

Understanding electronic correlations remains one of the most important challenges in theoretical condensed matter physics. The interaction-induced metal-to-insulator Mott transition plays a major role in many transition metal oxides, f-electron materials and now in quantum optics. Upon doping or application of a strong electric field, strongly correlated Mott metals emerge from the Mott insulators, with fascinating properties. Moreover, the out-of-equilibrium behaviour of these systems is only beginning to be systematically explored experimentally. While these systems strongly challenge the standard concepts and methods of the quantum many-body theory, a new era is progressively unfolding, in which quantitative and detailed comparisons between theory and experiments is becoming possible in strong correlation regimes, even out of equilibrium.

The goal of this proposal is to construct, in close contact with experiments and phenomenology, a new generation of theoretical methods and algorithms in order to i) study the new states of matter induced by non-equilibrium phenomena in strongly correlated quantum systems, first in simple models, and then in realistic computations for real materials; ii) elucidate the mystery of high temperature superconductivity. Open source implementations of the methods and algorithms developed during this project will also be provided for a better knowledge diffusion.

Appel à propositions

ERC-2011-StG_20101014
Voir d’autres projets de cet appel

Régime de financement

ERC-SG - ERC Starting Grant

Institution d’accueil

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Contribution de l’UE
€ 1 130 800,00
Adresse
RUE LEBLANC 25
75015 PARIS 15
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Contact administratif
Jean-Christophe Coste (Mr.)
Chercheur principal
Olivier Paul Emile Parcollet (Dr.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)