Objective The stereoselective preparation of enantioenriched organic compounds of high structural complexity and synthetic value, in an economically viable and expeditious manner, is one of the most important goals in contemporary Organic Synthesis. In this proposal, I present a unified and conceptually novel approach for the conversion of flat, aromatic heterocycles into highly valuable compounds for a variety of applications. This approach hinges upon a synergistic combination of the dramatic power of organic photochemical transformations combined with the exceedingly high selectivity and atom-economy of efficient catalytic processes. Indeed, the use of probably the cheapest reagent (light) combined with a catalytic transformation ensures near perfect atom-economy in this journey from flat and inexpensive substructures to chiral added-value products. Conceptually, the photochemical operation is envisaged as a energy-loading step whereas the catalytic transformation functions as an energy-release where asymmetric information is inscribed into the products.The chemistry proposed herein will open up new vistas in enantioselective synthesis. Furthermore, groundbreaking and unprecedented methodology in the field of catalytic allylic alkylation is proposed that significantly expands (and goes beyond) the currently accepted “dogmas” for these textbook reactions. These include (but are not limited to) systematic violations of well-established rules “by design”, new contexts for application, new activation modes and innovative leaving groups. Finally, the comprehensive body of synthetic technology presented will be applied to pressing target-oriented problems in Organic Synthesis. It shall result in a landmark, highly efficient total synthesis of Tamiflu, as well as in application to an environmentally important target (Fomannosin), allowing the easy production of analogues for biological testing. Fields of science natural scienceschemical sciencesorganic chemistryaromatic compounds Programme(s) FP7-IDEAS-ERC - Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) Topic(s) ERC-SG-PE5 - ERC Starting Grant - Materials and Synthesis Call for proposal ERC-2011-StG_20101014 See other projects for this call Funding Scheme ERC-SG - ERC Starting Grant Coordinator UNIVERSITAT WIEN Address Universitatsring 1 1010 Wien Austria See on map Region Ostösterreich Wien Wien Activity type Higher or Secondary Education Establishments Principal investigator Nuno Xavier Dias Maulide (Dr.) Administrative Contact Helmut Schaschl (Dr.) Links Contact the organisation Opens in new window Website Opens in new window EU contribution No data Beneficiaries (2) Sort alphabetically Sort by EU Contribution Expand all Collapse all UNIVERSITAT WIEN Austria EU contribution € 1 235 000,00 Address Universitatsring 1 1010 Wien See on map Region Ostösterreich Wien Wien Activity type Higher or Secondary Education Establishments Principal investigator Nuno Xavier Dias Maulide (Dr.) Administrative Contact Helmut Schaschl (Dr.) Links Contact the organisation Opens in new window Website Opens in new window Other funding No data MAX PLANCK INSTITUT FUER KOHLENFORSCHUNG Participation ended Germany EU contribution € 252 000,00 Address Kaiser wilhelm platz 1 45470 Muelheim an der ruhr See on map Region Nordrhein-Westfalen Düsseldorf Mülheim an der Ruhr Activity type Research Organisations Administrative Contact Salome Marenya (Ms.) Links Contact the organisation Opens in new window Website Opens in new window Other funding No data