Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Numerical integration of Geometric Partial Differential Equations

Ziel

"The goal of this project is to develop new numerical methods for the approximation of evolution equations possessing strong geometric properties such as Hamiltonian systems or stochastic differential equations. In such situations the exact solutions endow with many physical properties that are consequences of the geometric structure: Preservation of the total energy, momentum conservation or existence of ergodic invariant measures. However the preservation of such qualitative properties of the original system by numerical methods at a reasonable cost is not guaranteed at all, even for very precise (high order) methods.

The principal aim of geometric numerical integration is the understanding and analysis of such problems: How (and to which extend) reproduce qualitative behavior of differential equations over long time? The extension of this theory to partial differential equations is a fundamental ongoing challenge, which require the invention of a new mathematical framework bridging the most recent techniques used in the theory of nonlinear PDEs and stochastic ordinary and partial differential equations. The development of new efficient numerical schemes for geometric PDEs has to go together with the most recent progress in analysis (stability phenomena, energy transfers, multiscale problems, etc..)

The major challenges of the project are to derive new schemes by bridging the world of numerical simulation and the analysis community, and to consider deterministic and stochastic equations, with a general aim at deriving hybrid methods. We also aim to create a research platform devoted to extensive numerical simulations of difficult academic PDEs in order to highlight new nonlinear phenomena and test numerical methods."

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

ERC-2011-StG_20101014
Andere Projekte für diesen Aufruf anzeigen

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

ERC-SG - ERC Starting Grant

Gastgebende Einrichtung

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE
EU-Beitrag
€ 971 772,00
Adresse
DOMAINE DE VOLUCEAU ROCQUENCOURT
78153 Le Chesnay Cedex
Frankreich

Auf der Karte ansehen

Aktivitätstyp
Research Organisations
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

Keine Daten

Begünstigte (1)

Mein Booklet 0 0