Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Video and 3D Analysis for Visual Learning

Objectif

"Reliable recognition of thousands of object and action categories is today's key challenge in computer vision. Most contemporary approaches are based on supervised learning algorithms to train object classifiers. While manual annotation has become easier in recent years, it is still not scalable to a large set of categories. Moreover, as it is usually based on human language it does not reflect the visual characteristics of objects, but tries to establish high-level links that should actually be learned after appropriate visual features have been captured.

In this proposal, we aim at reducing the manual labeling effort by making use of the natural organization of visual data as it is provided by a video stream. In the same setting, we also aim at learning a more sophisticated structural representation of objects. Rather than manually specifying parts and attributes of objects that have a counterpart in language, we will seek correlated visual patterns by letting the data speak. Exploiting the natural arrangement of images in video and the inherent 3D scene structure is decisive, since weakly correlated images as obtained from photo collections might not contain rich enough relationship information.

We will also consider the active observer setting, i.e. where the camera can be moving. This allows extracting far more information, but also requires detailed control of the low-level and mid-level computer vision techniques involved, particularly motion estimation and tracking. The importance of these components is often underestimated in contemporary visual learning approaches.

Apart from the impact on the field of computer vision itself, the improved performance in visual recognition that we anticipate in this project has direct consequences for many important applications, particularly automotive systems and robotics, where the use of visual sensory input is more and more considered one of the most important components of future systems."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2011-StG_20101014
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Contribution de l’UE
€ 1 462 800,00
Adresse
FAHNENBERGPLATZ
79098 Freiburg
Allemagne

Voir sur la carte

Région
Baden-Württemberg Freiburg Freiburg im Breisgau, Stadtkreis
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0