Objectif
The main goal of the project is to reach a better mathematical understanding of the (integro)-partial differential equations from kinetic theory, in particular their qualitative and asymptotic behavior, derivation from many particle systems, and singular limits. Although various evolution problems from physics shall be considered, the paradigmatic ones are the Boltzmann equation for gas dynamics and the Vlasov-Poisson equation for plasmas and galactic dynamics.
The methodology is focused on the developement of conceptual tools and mathematical techniques. It shall put therefore the emphasize on the structures common to several problems, with a view to their possible application to other fields of mathematical analysis. The methodology is also characterized by the search, whenever possible, of constructive quantitative methods of proofs, and by the attention payed to the qualitative meaning of the mathematical results obtained for physics.
The tasks related to the general goal of the project are organized into the following four parts:
I. Space-independent kinetic equations for describing microscopic interactions (Cauchy problem for long-ranged interactions, granular gases and self-similarity).
II. Transport equations and phase mixing (Landau damping for Vlasov equations, inviscid damping for 2-dimensional incompressible fluids).
III. How transport and collisions mix: hypocoercivity (spectral and stability analysis of hypocoercive collisional operators according to the local equilibrium space and the geometry of confinement).
IV. Derivation of kinetic equations (mean-field and Boltzmann-Grad limits by semigroup approach).
I have been involved in many recent progresses related to these aspects and I aim at constructing a team around me in order to achieve these tasks and objectives. Kinetic theory is developing a growing rate, and the construction of such a team in Europe would be timely.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures analyse mathématique équations différentielles équations différentielles partielles
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2011-StG_20101014
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
CB2 1TN Cambridge
Royaume-Uni
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.