Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-06-18

Mathematical Aspects of Kinetic Theory

Obiettivo

The main goal of the project is to reach a better mathematical understanding of the (integro)-partial differential equations from kinetic theory, in particular their qualitative and asymptotic behavior, derivation from many particle systems, and singular limits. Although various evolution problems from physics shall be considered, the paradigmatic ones are the Boltzmann equation for gas dynamics and the Vlasov-Poisson equation for plasmas and galactic dynamics.

The methodology is focused on the developement of conceptual tools and mathematical techniques. It shall put therefore the emphasize on the structures common to several problems, with a view to their possible application to other fields of mathematical analysis. The methodology is also characterized by the search, whenever possible, of constructive quantitative methods of proofs, and by the attention payed to the qualitative meaning of the mathematical results obtained for physics.

The tasks related to the general goal of the project are organized into the following four parts:
I. Space-independent kinetic equations for describing microscopic interactions (Cauchy problem for long-ranged interactions, granular gases and self-similarity).
II. Transport equations and phase mixing (Landau damping for Vlasov equations, inviscid damping for 2-dimensional incompressible fluids).
III. How transport and collisions mix: hypocoercivity (spectral and stability analysis of hypocoercive collisional operators according to the local equilibrium space and the geometry of confinement).
IV. Derivation of kinetic equations (mean-field and Boltzmann-Grad limits by semigroup approach).

I have been involved in many recent progresses related to these aspects and I aim at constructing a team around me in order to achieve these tasks and objectives. Kinetic theory is developing a growing rate, and the construction of such a team in Europe would be timely.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2011-StG_20101014
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-SG - ERC Starting Grant

Istituzione ospitante

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contributo UE
€ 1 150 000,00
Indirizzo
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Regno Unito

Mostra sulla mappa

Regione
East of England East Anglia Cambridgeshire CC
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0