Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

LIGHT ELEMENT MOLECULAR SUPERCONDUCTIVITY: AN INTERDISCIPLINARY APPROACH

Ziel

This project will develop methodology for the design of light element (B, C, O) cluster/molecule-based superconducting systems with higher transition temperatures. This will be achieved by integrating chemical synthesis of new materials with physical control of electron density and delocalisation underpinned by theoretical understanding benchmarked against evidence from advanced spectroscopies and electronic property measurements to provide a unique multidisciplinary training environment. The consortium brings together ten world-leading EU/Japan groups in chemical design/materials synthesis (Liverpool/Okayama/Mainz/Aoyama Gakuin), physical control methods at extreme pressures/high electric fields (Osaka/Tokyo), evaluation of structural and electronic properties (Durham/Ljubljana) and theory and simulation (Trieste/Tokyo). The step change in the properties of molecular superconductors and the fundamental understanding of the novel competing electronic ground states from which superconductivity will emerge will be achieved by focussing on light element materials in which a fine balance exists between electron-phonon coupling and the electron correlations recently identified as significant in these systems. The rich diversity of molecular materials classes with high frequency phonons implicated in phonon-driven mechanisms of superconductivity and the ability to systematically control the importance of co-existing electron correlations in these narrow band systems by chemical and physical means justify our choice of targets. Light elements are cheap, abundant, non-toxic and environmentally benign and thus ideal candidates for sustainable energy-saving superconductor technologies without the need to use toxic and/or rare elements. The discovery of light element molecular superconductors with figures-of-merit needed for applications is a grand challenge requiring the fundamental research proposed here to identify proof-of-concept materials and scientific understanding.

Aufforderung zur Vorschlagseinreichung

FP7-NMP-2011-EU-Japan
Andere Projekte für diesen Aufruf anzeigen

Koordinator

UNIVERSITY OF DURHAM
EU-Beitrag
€ 389 778,80
Adresse
STOCKTON ROAD THE PALATINE CENTRE
DH1 3LE Durham
Vereinigtes Königreich

Auf der Karte ansehen

Region
North East (England) Tees Valley and Durham Durham CC
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Wendy Harle (Ms.)
Links
Gesamtkosten
Keine Daten

Beteiligte (5)