Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Size effects in fracture and plasticity

Objectif

Understanding how materials respond to external mechanical perturbation is a central problem of science and engineering. While for most practical purposes it is useful to idealize the mechanical response of a material as a deterministic function of the externally applied perturbation, disorder and fluctuations are unavoidable, leading to sample-to-sample variations and non-trivial size effects. The size dependence of strength is a well known but still unresolved issue in the fracture of materials and structures. The difficulty in addressing this problem stems from the complex interplay between microstructual heterogeneity and long-range elastic interactions. Furthermore, in micro and nanoscale samples, the plastic yield strength displays size effects and strain bursts, features that are not present in macroscopic samples where plasticity is a smooth process. Large fluctuations both in fracture processes and in microscale plasticity make the use of conventional continuum mechanics problematic and calls instead for a statistically based approach. These problems are becoming particularly important in the current miniaturization trend towards nanoscale devices, since the relative amplitude of fluctuations grows as the sample size is reduced. In this project, concepts and tools of statistical mechanics are used to address size effects and fluctuations in the irreversible deformation and failure of materials. The general objective is to provide a quantitative theory that can be used as base for setting reliable safety factors. The theory will be based on the renormalization group and will be guided and validated by large scale numerical simulations such as molecular dynamics, discrete dislocation dynamics and disordered network models. Finally, we will analyze experimental data present in the literature.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2011-ADG_20110209
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-AG - ERC Advanced Grant

Institution d’accueil

UNIVERSITA DEGLI STUDI DI MILANO
Contribution de l’UE
€ 896 423,82
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (3)

Mon livret 0 0