Objectif
The principal methods of model theory, in its connections to algebraic geometry, have been quantifier elimination (e.g. Tarski's theorem)
and structural stability (used here in a wide sense, including simplicity, NIP and structural o-minimality.)
We propose to move beyond current limitations on both fronts, by means of three interrelated projects. (1) A study of definable sets in global fields. A successful quantifier elimination result in this setting would extend the reach of model theory to wide areas of number theory and geometry that have not been accessible before, including points of small height in number theory, and the Gromov-Witten invariants of a variety in geometry. (2) A study of limits of o-minimal metric structures as quotients of non-archimedean structures, extending similar measure and group-theoretic work that has led to a resolution of Pillay's conjectures in the o-minimal setting, and leading towards a model theory of Calabi-Yau degenerations. (3) Model theoretic asymptotic limits lead to measure and dimension theories, with associated dependence theories, that resemble known structures from stability theory but do not lie within the stable realm or its current extensions. Preliminary stability-theoretic considerations have already led to significant applications in combinatorics. We propose creating a structural stability theory based on pseudo-finite dimension, expected to create a long-term bridge between model theory and
additive combinatorics.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes logique mathématique
- sciences naturelles mathématiques mathématiques pures arithmétique
- sciences naturelles mathématiques mathématiques pures géométrie
- sciences naturelles mathématiques mathématiques pures mathématiques discrètes combinatoire
- sciences naturelles mathématiques mathématiques pures algèbre géométrie algébrique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
ERC-2011-ADG_20110209
Voir d’autres projets de cet appel
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Institution d’accueil
91904 JERUSALEM
Israël
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.