Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-30

Model Theory and asymptotic geometry

Obiettivo

The principal methods of model theory, in its connections to algebraic geometry, have been quantifier elimination (e.g. Tarski's theorem)
and structural stability (used here in a wide sense, including simplicity, NIP and structural o-minimality.)
We propose to move beyond current limitations on both fronts, by means of three interrelated projects. (1) A study of definable sets in global fields. A successful quantifier elimination result in this setting would extend the reach of model theory to wide areas of number theory and geometry that have not been accessible before, including points of small height in number theory, and the Gromov-Witten invariants of a variety in geometry. (2) A study of limits of o-minimal metric structures as quotients of non-archimedean structures, extending similar measure and group-theoretic work that has led to a resolution of Pillay's conjectures in the o-minimal setting, and leading towards a model theory of Calabi-Yau degenerations. (3) Model theoretic asymptotic limits lead to measure and dimension theories, with associated dependence theories, that resemble known structures from stability theory but do not lie within the stable realm or its current extensions. Preliminary stability-theoretic considerations have already led to significant applications in combinatorics. We propose creating a structural stability theory based on pseudo-finite dimension, expected to create a long-term bridge between model theory and
additive combinatorics.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2011-ADG_20110209
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-AG - ERC Advanced Grant

Istituzione ospitante

THE HEBREW UNIVERSITY OF JERUSALEM
Contributo UE
€ 1 393 499,60
Indirizzo
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 JERUSALEM
Israele

Mostra sulla mappa

Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0