Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-30

"BLOW UP, DISPERSION AND SOLITONS"

Obiettivo

"Many physical models involve nonlinear dispersive problems, like wave
or laser propagation, plasmas, ferromagnetism, etc. So far, the mathematical under-
standing of these equations is rather poor. In particular, we know little about the
detailed qualitative behavior of their solutions. Our point is that an apparent com-
plexity hides universal properties of these models; investigating and uncovering such
properties has started only recently. More than the equations themselves, these univer-
sal properties are essential for physical modelisation.
By considering several standard models such as the nonlinear Schrodinger, nonlinear
wave, generalized KdV equations and related geometric problems, the goal of this pro-
posal is to describe the generic global behavior of the solutions and the profiles which
emerge either for large time or by concentration due to strong nonlinear effects, if pos-
sible through a few relevant solutions (sometimes explicit solutions, like solitons). In
order to do this, we have to elaborate different mathematical tools depending on the
context and the specificity of the problems. Particular emphasis will be placed on
- large time asymptotics for global solutions, decomposition of generic solutions into
sums of decoupled solitons in non integrable situations,
- description of critical phenomenon for blow up in the Hamiltonian situation, stable
or generic behavior for blow up on critical dynamics, various relevant regularisations of
the problem,
- global existence for defocusing supercritical problems and blow up dynamics in the
focusing cases.
We believe that the PI and his team have the ability to tackle these problems at present.
The proposal will open whole fields of investigation in Partial Differential Equations in
the future, clarify and simplify our knowledge on the dynamical behavior of solutions
of these problems and provide Physicists some new insight on these models."

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

ERC-2011-ADG_20110209
Vedi altri progetti per questo bando

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-AG - ERC Advanced Grant

Istituzione ospitante

UNIVERSITE DE CERGY-PONTOISE
Contributo UE
€ 2 079 798,00
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Beneficiari (1)

Il mio fascicolo 0 0