Objective In order to continue with the size reduction of transistors it is necessary to use complex implantation conditions such as amorphizing implants. Models predicting the resulting dopant profile reduce the number of experiments necessary to design the best process to obtain the desired properties. In the case of development of materials for fusion applications, models are crucial since, as of today, there are no experimental facilities to reproduce the same conditions that the materials will withstand in a fusion reactor. Therefore, extrapolations must be made from different irradiation conditions (fission reactors or ion implantation). These materials are different, but the basic mechanisms are the same: production of defects, diffusion of these defects and interaction with other defects, impurities or the material microstructure. In the case of microelectronics these effects must be followed for a time scale of minutes, while in fusion it is necessary to model years of operation. Using the atomistic Object and Lattice Kinetic Monte Carlo techniques (OKMC, LKMC), tools that can achieve the scales and ranges involved, this project improves the scientific understanding, generates efficient models for technology development and provides a simulation workbench to optimize the use of SiGe, SiC (microelectronics) and Fe, FeCr (nuclear). Several atomic configurations will be included in LKMC to study the amorphous/crystalline transitions of Si-based materials and the formation of defective crystals during the transition. Binary alloys will be included in a OKMC scenario to study the evolution of defects under different conditions, to be used for SiC, SiGe and FeCr materials. Finally, parallelization techniques will improve the scope of KMC applications. The knowledge gain with this project improves the performance of last generation Si-based transistors, and the use of FeCr as a blanket material in the ITER and future DEMO project as well as other fusion reactor concepts. Fields of science natural sciencescomputer and information sciencescomputational sciencenatural sciencesphysical sciencesnuclear physicsnuclear fusionnatural sciencesphysical scienceselectromagnetism and electronicsmicroelectronicsmedical and health sciencesmedical biotechnologyimplants Programme(s) FP7-PEOPLE - Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) Topic(s) FP7-PEOPLE-2011-CIG - Marie-Curie Action: "Career Integration Grants" Call for proposal FP7-PEOPLE-2011-CIG See other projects for this call Funding Scheme MC-CIG - Support for training and career development of researcher (CIG) Coordinator FUNDACION IMDEA MATERIALES Address Calle eric kandel 2 parque cientifico y tecnologico tecnogetafe 28906 Getafe Spain See on map Region Comunidad de Madrid Comunidad de Madrid Madrid Activity type Research Organisations Administrative Contact Miguel ángel Rodiel (Mr.) Links Contact the organisation Opens in new window Website Opens in new window EU contribution No data