Skip to main content

Multi Atomistic Monte Carlo Simulation of Technologically Important Crystals

Objective

In order to continue with the size reduction of transistors it is necessary to use complex implantation conditions such as amorphizing implants. Models predicting the resulting dopant profile reduce the number of experiments necessary to design the best process to obtain the desired properties. In the case of development of materials for fusion applications, models are crucial since, as of today, there are no experimental facilities to reproduce the same conditions that the materials will withstand in a fusion reactor. Therefore, extrapolations must be made from different irradiation conditions (fission reactors or ion implantation). These materials are different, but the basic mechanisms are the same: production of defects, diffusion of these defects and interaction with other defects, impurities or the material microstructure. In the case of microelectronics these effects must be followed for a time scale of minutes, while in fusion it is necessary to model years of operation. Using the atomistic Object and Lattice Kinetic Monte Carlo techniques (OKMC, LKMC), tools that can achieve the scales and ranges involved, this project improves the scientific understanding, generates efficient models for technology development and provides a simulation workbench to optimize the use of SiGe, SiC (microelectronics) and Fe, FeCr (nuclear). Several atomic configurations will be included in LKMC to study the amorphous/crystalline transitions of Si-based materials and the formation of defective crystals during the transition. Binary alloys will be included in a OKMC scenario to study the evolution of defects under different conditions, to be used for SiC, SiGe and FeCr materials. Finally, parallelization techniques will improve the scope of KMC applications. The knowledge gain with this project improves the performance of last generation Si-based transistors, and the use of FeCr as a blanket material in the ITER and future DEMO project as well as other fusion reactor concepts.

Call for proposal

FP7-PEOPLE-2011-CIG
See other projects for this call

Coordinator

FUNDACION IMDEA MATERIALES
Address
Calle Eric Kandel 2 Parque Cientifico Y Tecnologico Tecnogetafe
28906 Getafe
Spain
Activity type
Research Organisations
EU contribution
€ 100 000
Administrative Contact
Miguel ángel Rodiel (Mr.)