Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-06-18

Boosting the performance of Quantum Chemistry for nanocatalysts, biomolecules and graphene layers by solving the fundamental drawback of van der Waals interactions in Density Functional Theory

Ziel

The goal of the proposed IEF project is to develop a novel Density Functional Theory (DFT) method, which will facilitate the very efficient investigation of large macromolecules. DFT is the most used quantum chemical method today, as it allows, at a low computational cost, to perform research at a quantum chemical level on systems containing up to thousands of atoms. However, standard DFT only includes a poor description of dispersion interactions, which occur in systems such as peptides, DNA base-pairs, graphene layers and heterogeneous catalysts.
To overcome this great disadvantage the IEF will:
a) transform a model for evaluation of dispersion energies at DFT level into a pragmatic and accurate methodology.
b) implement the methodology, through design and application of advanced computational chemistry techniques into an efficient and user-friendly software.
c) apply this novel DFT method on high-profile problems (nanocatalysts, biomolecules, graphene layers)
The results will directly impact research in biochemistry, material science, catalysis and supramolecular chemistry boosting fast and accurate studies on numerous macromolecular systems.
The applicant is an expert in DFT, who will complement her skills in Computational Chemistry and design of methods within the Theoretical Chemistry Group at the University of Kaiserslautern (Germany), who are leading scientists in the field. These investigations will allow the fellow to acquire excellent expertise in a pioneering research topic, which is of crucial importance for the worldwide efforts for using macromolecules in innovative technologies. In combination with the complementary training, this IEF project will help the applicant to obtain scientific maturity and actively participate in shaping future research regarding DFT methodologies for large systems, which is a rapidly emerging field. Consequently, the IEF perfectly consolidates the fellow’s long-term aim to reach an independent research position in Europe

Aufforderung zur Vorschlagseinreichung

FP7-PEOPLE-2011-IEF
Andere Projekte für diesen Aufruf anzeigen

Koordinator

RHEINLAND-PFALZISCHE TECHNISCHE UNIVERSITAT
EU-Beitrag
€ 174 475,20
Adresse
GOTTLIEB DAIMLER STRASSE
67663 Kaiserslautern
Deutschland

Auf der Karte ansehen

Region
Rheinland-Pfalz Rheinhessen-Pfalz Kaiserslautern, Kreisfreie Stadt
Aktivitätstyp
Higher or Secondary Education Establishments
Kontakt Verwaltung
Berthold Klein (Mr.)
Links
Gesamtkosten
Keine Daten