Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Capturing transition states associated with lineage decisions in the early mouse embryo

Objective

During early mouse embryogenesis the cells of the blastocyst’s inner cell mass take a lineage decision to contribute either to the epiblast or the primitive endoderm (PE). The allocation of cells to either lineage depends on the activity of FGF signaling and two gene regulatory networks (GRNs), one centered on the transcription factor Nanog, the other one relying on Gata factors. The two GRNs are initially activated in an overlapping and heterogeneous pattern in the ICM, and have been proposed to compete each other out over time. The dynamics of this competition, and how the transition state between the two lineages, marked by co-expression Gatas and Nanog, is resolved, is not known.
Here I propose to address these questions in vitro by recapitulating the competition between the Gata- and Nanog-GRNs through the controlled overexpression of Gata factors. This converts embryonic stem cells (ESCs), which contribute primarily to the epiblast when introduced in chimeras, into extraembryonic endoderm (XEN) cells, which contribute solely to PE derivatives. I will combine fluorescent reporters with this ES-to-XEN transition to ask with which dynamics transitions occur in individual cells, whether they involve heterogeneities at the population level, and how these parameters are controlled by the activity of gene regulatory networks and signaling pathways. I will aim at identifying culture conditions that stabilize the transition state, where cells might be on the brink of being XEN, and therefore akin to ICM. I hypothesize, that under these conditions cells will be endowed with higher developmental potential compared to parental ES cells, and be able to contribute to both epiblast and PE-derived tissues.
The results of this project will enhance our understanding of the mechanisms underlying lineage decisions in early development and may uncover more general principles that govern the way in which differentiating cells are specified in a stem cell pool.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2011-IEF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IEF - Intra-European Fellowships (IEF)

Coordinator

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 209 033,40
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0