Objetivo
Many-valued logics were first considered by J. Łukasiewicz in 1920. MV-algebras were introduced by C.C.Chang in 1958 to prove the completeness theorem for infinite-valued Łukasiewicz logic. In the last 25 years the importance of MV-algebras and Łukasiewicz logic has been increasing, for three main reasons: (i) the discovery of a categorical equivalence between MV-algebras and lattice-ordered Abelian groups with an Archimedean unit; (ii) the deep relations between MV-algebras and polyhedral and toric geometry: suffice to say that the strong Oda conjecture is equivalent to the joint refinability of MV-algebraic bases; (iii) the applications of many-valued logic to the treatment of uncertain information, e.g. in the Rényi-Ulam game of Twenty Questions with errors, i.e. Berlekamp’s theory of feedback error-correcting coding; remarkably enough, the tautology problem of infinite-valued logic is coNP-complete, precisely as its two-valued counterpart.
The overall aim of this project is the application of techniques from algebraic topology, polyhedral geometry and functional analysis to the study of the fine structure of MV-algebras and the deductive-algorithmic theory of Łukasiewicz logic. The minimization problem for finitely axiomatized theories and the characterization of projective MV-algebras and its application to unification theory in Łukasiewicz logic, are just two challenging problems, with ramifications to various mathematical areas. These problems will be investigated by refined techniques arising from MV-algebraic representation theory. The basic methodology has been introduced in the applicant’s joint papers with the researcher in charge, published (or to appear) in Communications in Contemporary Mathematics, Forum Mathematicum, Algebra Universalis, Journal of Algebra.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras álgebra
- ciencias naturales matemáticas matemáticas puras topología topología algebraica
- ciencias naturales matemáticas matemáticas puras análisis matemático análisis funcional
- ciencias naturales matemáticas matemáticas puras geometría
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
FP7-PEOPLE-2011-IEF
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Coordinador
50121 Florence
Italia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.