Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Topological Representation of MV-algebras

Objetivo

Many-valued logics were first considered by J. Łukasiewicz in 1920. MV-algebras were introduced by C.C.Chang in 1958 to prove the completeness theorem for infinite-valued Łukasiewicz logic. In the last 25 years the importance of MV-algebras and Łukasiewicz logic has been increasing, for three main reasons: (i) the discovery of a categorical equivalence between MV-algebras and lattice-ordered Abelian groups with an Archimedean unit; (ii) the deep relations between MV-algebras and polyhedral and toric geometry: suffice to say that the strong Oda conjecture is equivalent to the joint refinability of MV-algebraic bases; (iii) the applications of many-valued logic to the treatment of uncertain information, e.g. in the Rényi-Ulam game of Twenty Questions with errors, i.e. Berlekamp’s theory of feedback error-correcting coding; remarkably enough, the tautology problem of infinite-valued logic is coNP-complete, precisely as its two-valued counterpart.
The overall aim of this project is the application of techniques from algebraic topology, polyhedral geometry and functional analysis to the study of the fine structure of MV-algebras and the deductive-algorithmic theory of Łukasiewicz logic. The minimization problem for finitely axiomatized theories and the characterization of projective MV-algebras and its application to unification theory in Łukasiewicz logic, are just two challenging problems, with ramifications to various mathematical areas. These problems will be investigated by refined techniques arising from MV-algebraic representation theory. The basic methodology has been introduced in the applicant’s joint papers with the researcher in charge, published (or to appear) in Communications in Contemporary Mathematics, Forum Mathematicum, Algebra Universalis, Journal of Algebra.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2011-IEF
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

UNIVERSITA DEGLI STUDI DI FIRENZE
Aportación de la UE
€ 185 763,60
Dirección
Piazza San Marco 4
50121 Florence
Italia

Ver en el mapa

Región
Centro (IT) Toscana Firenze
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0