Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-05-29

Spectral Analysis of Non-selfadjoint and Selfadjoint Operators - New Methods and Applications

Objectif

"This project will focus on the development of new methods for the study of spectral problems of non-selfadjoint operators and the application of these methods to real-world problems. We will organise a range of activities to promote our research and, more generally, mathematical analysis to scientists and students.

Non-selfadjoint operators and spectral problems arise naturally in many application areas such as hydrodynamics and MHD, lasers, scattering and inverse scattering problems, and numerical methods for photonic crystal fibres. The spectral behaviour of these operators exhbits many new phenomena compared to selfadjoint operators. The spectral theorem and variational principles are not valid. Unable to make use of these methods, we turn to an exciting technique, boundary triples, with which we have already recently obtained very general results for PDEs under minimal and natural hypotheses, with few technical complications.

Our first problem we will consider is the explicit construction of a functional model for a wide class of operators. This will yield many new results for differential operators in terms of their coefficients
rather than in completely abstract terms as at present. Our second problem is to analyse the `detectable subspace' in inverse problems: the maximal part of the operator which can be reconstructed from boundary measurements. Further problems will include PT-symmetric operators and operators with almost Hermitian spectrum. Finally, we will investigate in detail a class of highly singular ODEs.

Our outreach activities will include the organisation of two workshops for scientists, several lecture series, as well as a summer school for postgraduates and some workshops for undergraduate students."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2011-IIF
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-IIF - International Incoming Fellowships (IIF)

Coordinateur

UNIVERSITY OF KENT
Contribution de l’UE
€ 278 807,40
Adresse
THE REGISTRY CANTERBURY
CT2 7NZ Canterbury, Kent
Royaume-Uni

Voir sur la carte

Région
South East (England) Kent East Kent
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0